Journal of MEDICINAL AND PHARMACEUTICAL CHEMISTRY

Volume 5, Number 2 © Copyright 1962 by the American Chemical Society Marc

March 21, 1962

Chemistry and Pharmacology of Monoamine Oxidase Inhibitors: Hydrazine Derivatives

FLOYD E. ANDERSON, DANIEL KAMINSKY,¹ BERNARD DUBNICK, Sylvester R. Klutchko, Wiaczeslaw A. Cetenko, Jonas Gylys, and John A. Hart

Warner-Lambert Research Institute, Morris Plains, N. J.

Received October 28, 1961

The preparations and some pharmacological properties of 70 aralkyl hydrazines and acylated hydrazines are described. From the data obtained attempts were made to correlate activity with structure. Several highly efficient monoamine oxidase inhibitors were uncovered and presently are undergoing additional laboratory and clinical tests.

During the early clinical testing of iproniazid as an antituberculous agent in 1951, the development of euphoria in patients was noted among the side effects of the drug.² In 1952, Zeller and co-workers found that iproniazid is an inhibitor of monoamine oxidase (MAO) *in vivo*³ and *in vitro*⁴ and suggested the potential antidepressant utility of such a compound which could result from potentiation of amines whose metabolism is normally catalyzed by this enzyme (MAO) in the central nervous system.³ This possibility was dramatized by Brodie and his associates⁵ and in our laboratory⁶ with the demonstra-

⁽¹⁾ To whom all inquiries regarding this paper should be addressed.

⁽²⁾ This experience is recalled by D. M. Bosworth, Ann. N. Y. Acad. Sci., 80, 809 (1959).

⁽³⁾ E. A. Zeller and J. Barsky, Proc. Soc. Exp. Biol. Med., 81, 459 (1952).

⁽⁴⁾ E. A. Zeller, J. Barsky, J. R. Fouts, W. F. Kirchheimer, and L. S. Van Orden, *Experientia*, 8, 349 (1952).

⁽⁵⁾ B. B. Brodie, A. Pletscher, and P. A. Shore, J. Pharmacol. Exptl. Therap., 116, 9 (1956).

⁽⁶⁾ M. Chessin, B. Dubnick, E. R. Kramer, and C. C. Scott, Federation Proc., 15, 409 (1956).

222 ANDERSON, KAMINSKY, DUBNICK, KLUTCHKO, CETENKO, AND HART Vol. 5

tion that rabbits and mice pretreated with iproniazid and then injected with reserpine showed extreme "amphetamine-like" stimulation.⁷ Clinical interest in MAO inhibitors *per se* as therapeutic agents had been awakened. The early experience of Zeller and others pointing toward alkyl and aralkyl substituted hydrazines as potent MAO inhibitors was presented in a recent symposium.⁸ The National Heart Institute group, making use of iproniazid and some of the many compounds synthesized by Biel and his associates,^{9,10} demonstrated that inhibition of MAO in the brain does indeed result in increased levels of endogenous amines such as serotonin, norepinephrine, tryptamine and possibly others.¹¹⁻¹⁴

The compounds tabulated in this paper are a selection from over one hundred substituted hydrazines synthesized as part of a program covering a number of years of experience in our laboratory. This program was initiated by the discovery in our laboratories that phenethylhydrazine was an extremely efficient MAO inhibitor, which eventually resulted in a therapeutically successful antidepressant drug.^{15,16}

Pharmacology: The "Reserpine-challenge Test."—This procedure has been useful for screening large numbers of potential MAO inhibitors in mice.^{10,17} However, certain limitations should be noted. This test detects MAO inhibition only when it occurs in the brain. For example, although 1-acetyl-2-[1-(p-hydroxyphenyl)propyl]hydrazine and 1-acetyl-2-(p-hydroxybenzyl)hydrazine were negative at 150 and 100 mg./kg., respectively, both compounds inhibited mouse liver MAO about 50%, but brain MAO not at all, one hour after 50 and 30 mg./kg. i.p., respectively.

Selected successful MAO inhibitors have been compared in our lab-

(7) M. Chessin, E. R. Kramer, and C. C. Scott, J. Pharmacol. Exptl. Therap., 119, 453 (1957).

(8) "Amine Oxidase Inhibitors," Ann. N. Y. Acad. Sci., 80, 551-1045 (1959).

(9) J. H. Biel, A. E. Drukker, P. A. Shore, S. Spector, and B. B. Brodie, J. Am. Chem. Soc., 80, 1319 (1958).

(10) J. H. Biel, A. E. Drukker, T. F. Mitchell, E. P. Sprengeler, P. A. Nuhfer, A. C. Conway and A. Horita, *ibid.*, **81**, 2805 (1959).

(11) S. Udenfriend, H. Weissbach, and D. F. Bogdanski, J. Pharmacol. Exptl. Therap., 120, 255 (1957).

(12) S. Spector, D. Prockop, P. A. Shore, and B. B. Brodie, Science, 127, 704 (1957).

(13) S. M. Hess, B. G. Redfield, and S. Udenfriend, J. Pharmacol. Exptl. Therap., 127, 178 (1959).

(14) A. Sjoerdsma, W. Lovenberg, J. A. Oates, J. R. Crout, and S. Udenfriend, Science, 130, 225 (1959).

(15) L. E. Arnow, Clin. Med., 6, 1573 (1959).

(16) NARDIL.[®] Phenelzine (phenethylliydrazine dihydrogen sulfate).

(17) M. Chessin, B. Dubnick, G. Leeson, and C. C. Scott, Ann. N.Y. Acad. Sci., 80, 597 (1959).

oratory according to their ability to elevate brain serotonin; they exhibited a dose-response relationship.¹⁷ Although for the most part the same order of potency prevailed in this test as in the reserpine challenge, occasionally differences were noted. For example, whereas it required 3.4 mg./kg. of α -methylphenethylhydrazine and 1.5 mg./ kg. of α -methylbenzylhydrazine, to elevate whole mouse-brain serotonin by 50%, the two compounds were of equal potency¹⁸ by reserpine-challenge.¹⁹ That this apparent discrepancy may be the result of the "analpetic" component of α -methylphenethylhydrazine which α -methylbenzylhydrazine lacks, was shown in the following experiment: Normal mice were pretreated with amphetamine sulfate at a dose not sufficient to cause any visible excitation in these animals or to re-alert reserpine-depressed mice, 0.25-0.50 mg./kg., i.v. After fifteen minutes the amphetamine-pretreated mice were challenged with reserpine (5 mg./kg., i.v.). The animals became intensely hyperactive, *i.e.*, a positive reserpine-challenge test. However, the hyperactivity was of short duration, about 20 minutes, after which the animals became depressed. The endogenous amines released by reserpine when superimposed upon a subeffective level of amphetamine may have been sufficient to cause the observed response.

Experimental

The preparation of the seventy substituted hydrazines reported in this paper (see Tables I and II) required several synthetic approaches, as exemplified below:

Method A.—Eight compounds were prepared by direct reaction of an aralkyl halide with a large excess of hydrazine hydrate, with yields ranging from 25–78%. This is essentially the method outlined by Clark.²⁰

p-Chlorophenethylhydrazine Hydrogen Sulfate.—A solution of 25.9 g. (0.148 mole) of *p*-chlorophenethyl chloride in 50 ml. of isopropyl alcohol was added dropwise, over 0.5 hr., to a refluxing solution of 50 g. (1.0 mole) of hydrazine hydrate in 100 ml. of isopropyl alcohol. The mixture was refluxed for 10 hr., and the solvent and excess hydrazine were removed under vacuum. Potassium hydroxide solution (40%, 50 ml.) was added to the residue, the organic layer extracted with two 500 ml. portions of ether and the ether layer dried over anhydrous potassium carbonate. After filtering and removing the ether, the residue was distilled to yield 16.5 g. (65.8%) of *p*-chlorophenethylhydrazine as a colorless oil, b.p. 110–112° (1.0 mm.), n^{25} p 1.5610. The sulfate salt, m.p. 152–155°, was prepared from aqueous sulfuric acid and recrystallized from isopropyl alcohol.

⁽¹⁸⁾ B. Dubnick and M. Chessin, unpublished observations.

⁽¹⁹⁾ The ED₁₆'s, significantly different (P = 0.95 by the statistical method previously employed), were calculated graphically from a dose-response curve.¹⁷ The dose-related response was illustrated in that report with phenethylhydrazine as a reference compound.

⁽²⁰⁾ C. C. Clark, "Hydrazine," Mathieson Chem. Corp., New York, N. Y., 1953, p. 30,

TABLE I

(A) Benzyl Derivatives, $\mathbf{R} \neq \mathbf{H}, \mu = 0$

				Method
Z.	X	Y	M.p. (b.p.), "C.	of prepa.
Н	IŦ	н	111-113*	$\mathbf{D}^{h,n}$
Н	н	COCH	80-81 ^b	D
н	FI	COOC ₂ H ₅	(139 (0.5 mm))	Ĉ/
Н	Н	COOCH ₃	52-54 ª	C
p-CH ₃	H	Н	$130 - 132^{n}$	D
p-Cl	н	11	194-196*	A
p-HO	H	COCH	111-113°	Ď
e-HO	н	COOC ₂ H ₅	$90 - 95^{b}$	С
n-NO2	H	COOC ₂ H ₅	87-881	Ċ
m-NH:	Ĥ	COCH	$108 - 109.5^{\circ}$	Ď
m-NH ₂	н	COOC ₂ H ₅	101–103 ^b	Ē
v-(CH3)2N	н	COCH ₃	75-76.5	D
p-CH ₃ CONH	н	COCH ₃	$202-204^{a}$	$\overline{\mathbf{D}}$
v-C4H ₈ O	H	Н	176-177**	Ċ
v-C4HO	Н	COCH3	94.5-96°	Ď
p-C4H9O	COCIIa	COCH ₃	89-91 ^b	E
p-CAHO	Н	COOC	38-60 ⁿ	ē
p-C4H9O	н	Н	176-177 ^{<i>a</i>}	Ċ
p-CeHuO	H	COCHa	88-90 ^b	Ð
p-FaC	11	Н	$138 - 139^{d}$	Ā
p-CoH5	Н	11	256 dec. ^a	A
		(B) a-Met	hylbenzyl Derivatives R =	$= CH_3 u = 0$
LT	TI.	11	187 2 2704	$p \in p$
11	U U	COOCHI	107.5~170	$\mathbf{D}_{1} \mathbf{C}_{1} \mathbf{D}_{2}$
11 17	11 LT	COOCH	(120, (0, 4, mm))	C
TT TT	COOCIL	COOCH	(150 (0.4 mm))	E
II II	u COOCIIS	COOCIII	(100~102 (0.7 mm))	I C
11 ~ F	TT	u COOCCIII	160.1614	Ċ
p-r m F	11	COOC.U.	02 024	C
<i>p</i> -r	11	COOCH	92-93 71 70k	0
p-r m Cl	11	UUUUII3	11-12	
p-CI	TI	COCU.	140-140	12
p-C1	11	COOCH	96.994	C
p-CI p-CH ₂ O	11	и	155-156#	12
p-CH ₂ O	11 FI	COCH	05-06 5 ^b	10
p-CH ₃ O	H	COOCH	71-794	C'
p-OH:0	COCH	COCH	100-102	E,
p-OII30	н	н	175-176"	13
p-C ₂ H ₃ O	н	COCH	77-784	Ď
p-C ₂ H ₂ O	COCH	COCH	9.1_98 ^b	E .
p-021150	H	14	154-156"	4
n-CeHsCH	Н	COOCH	157-158/	Ċ
p-CoHsO	II.	II	111	Ċ
p-C6H5O	11	COOCHs	155-156"	C
p-CuHaSO 2	II	COOCH	$139 - 140^{2}$	C
A				

								Reserpine-
Empirical	Carb	on, %	Hydro	gen, %	Nitros	zen, %	Acute	challenge
formula	Calcd.	Found	Calcd.	Found	Caled.	Found	$toxicity^p$	$test^q$
C-HaNa HCI	52 99	52 88	6 99	7 28	22 35	22 15	90	5
C ₀ H ₁₀ N ₂ O	65 83	65.93	7 37	7 69	17 06	17.26	550	15
CuHuNo0	61 83	61 49	7 27	7 23	14 42	14 74	300	10-25
C ₆ H ₁₀ N ₂ O ₂	59.98	60 15	6 71	6 71	15.55	15 44	375	10
C.H. No HCI	55 64	56 19	7 59	7.50	20 53	20.72^{m}	150	5-10
C7HoCINo HCI	43 54	43 60	5.22	5 44	18.36	18.17^{m}	200	25
CoHyoNoOo	59 98	59 88	6.71	7 00	15 55	15 67	>1200	100
C10H14N2O3	57.13	57.28	6.71	6.64	13.33	13.20	>1000	100
C10H12N2O4	50.20	49 79	5.48	5 56	17.57	17.28		10 - 25
CoH12NeO	60.31	59.59	7.31	7.31	23.45	23.83	>2000	>100-200
C10H15N3O2	57.40	58 08	7.23	7 02	20.08	19.81	>1000	>100
CuHizNaO	63.74	63 75	8.27	8 56	20.27	19.88	>1000	>100
CuH15N3O2	59.71	59.69	6.83	6.90	18.99	19.26	1000	50
CuHuNO CoHoO	54.92	54 93	7.09	7 20	9.85	9.59	475	7
CiaHanNaOa	66 07	66 03	8.53	8 56	11.86	12.23	1000	>100
C15H22N2O2	64.72	64.62	7.97	8.00	10.07	10.26	>1500	>200
Cid Has NoOs	63.13	63.83	8.33	8.33	10.52	10.52	680	25
C11 H18 N2O · C2H2O4	54.92	54.93	7.09	7.20	9.85	9.59	475	7
C15H22N2O2	68.67	68.67	8.45	8.55	10.68	10.77	250	25
CaHaFaNa HCl	42.39	42.35	4.45	4.49	12.36	12.70	375	10
C12H14N2+HCl	66.51	66.24	6.44	6.41	11.94	11.88	600	2.5-5
					1.5 1.0	14.04	007 000	-
$C_8H_{14}N_2 \cdot 1/_2H_2SO_4$					15.12	14.94	265-360	5
$C_{11}H_{16}N_2O_2$	63.44	63.41	7.74	7.69	13.45	13.12	375	10
C10 H14 N2O2	61.83	62.01	7.27	7.32	14.42	14.24	375	10
$C_{13}H_{18}N_2O_4$	58.63	58.34	6.81	6.94	10.52	10.79	300	50
$C_{18}H_{20}N_2O_2$	66.07	66.30	8.53	8.76	11.80	11.62	400	10-25
$C_8H_{11}FN_2 \cdot C_2H_2O_4$	49.18	49.60	0.07	0.08	11,47	11.44	300	7.5
$C_{11}H_{15}FN_2O_2$	58.39	57.98	0.08	0.07	12.38	12.33	375	>100
$C_{10}H_{13}FN_2O_2$	20.29	57.34	0.17	0.43	13.20	10.11	400	25
C8H11CIN2 · HCI	40.39	40.31	0.84	0.00	10.17	10.84	350	15
C10H13CIN2U	50.47	50.41	0.10	0.40	13.17	13.24	300	>200
$C_{11}H_{15}CIN_2O_2$	54.34	54.79	0.23	0.13	11.04	11.87	300	>100
$C_9H_{14}N_2O \cdot C_2H_2O_4$	01.00	01.00	0.29	0.11	10.93	10.03	550	>15
$C_{11}H_{16}N_2O_2$	03.44	03.07	7 61	7.98	13.45	13.52	070 800	> 50
$C_{12}H_{18}N_2O_8$	00.48	01.04	7.01	7.74	11.70	12.00	> 1500	> 100
$C_{13}H_{18}N_2O_3$	02.38	02.74	6.20	(.30	10.27	10.45	>1500	>100
$C_{10}H_{16}N_2U \cdot C_2H_2U_4$	00.02	84 00	0.71	0.73	10.37	10.40	275	20
$C_{12}\Pi_{18}N_{2}O_{2}$	04.04	04.84	7 49	8.00	12.00	10.75	575 2000	> 200
$C_{14}\Pi_{20}N_2O_3$	67 50	03.08	6 90	7.10	11 96	10,75	2000	>200
C-H-NO-HC	62 64	62 70	6 60	6 51	11.20	11 2070	240	25
C.H.N.O.HC	62 51	03.70	6 47	6 43	13 40	12 57	400	20
C. H. N. Oa. HP.	52 32	52 50	5.21	5.96	21 76	21.85^{n}	240	10-25
C.H.N.O.S	52.00	57 39	5 49	5 30	8 38	8 22	1000	>25
U161118182U40	01.41	01.04	U. 74	0.00	0.00	0.44	1000	- 40

TABLE I

Z	Х	Ŷ	M.p. (b,p.), ^o C.	Method of prepn.
		(C)	z-Ethylbenzyl Derivatives, R =	C_2H_5 , $n = 0$
н	H	н	$130 - 131^{d}$	$D^{h \cdot i}$
Н	Н	COCH ₃	$63-64^{b}$	\mathbf{D}^{i}
н	н	COOC ₂ H ₆	(138-139 (0.8 mm.))	С
p-CI	н	н	$195 - 197^{\circ}$	D
p-HO	Н	COCH3	$153.5{ extstyle}154.5^b$	D
p-C ₆ H ₅	Н	Н	175-177*	А
			(D) Phenethyl Derivatives, R	= H, $n = 1$
H	П	11	160-1624	$\mathbf{A}^{h,i}$
н	н	$COCH_3$	68-69 ^b	\mathbf{D}^{i}
Н	Н	COC_6H_5	80-83 ¹	D^i
н	Н	COC ₆ H ₄ NH	2-p 159-160"	D
н	н	COC₅H₄N ^f	$178 - 180^{d}$	1)
н	Н	$i-C_{3}H_{7}$	120–121°	\mathbf{P}^{i}
Ι·Ι	н	COOCH3	75-77'	С
Н	EI	$COOC_2H_5$	$58-59^{b}$	С
н	H	$COO(CH_2)_2$	DH 98-99°	G
Н	н	$COO(CH_2)_2$	Cl 163.5-164 ^h	G
p-CH₃O	H	н	150-1514	A^k
p-Cl	н	Н	152-155 ^a	Α
$p-C_{6}H_{5}$	H	Н	193-1967	A
		(E)	γ -Phenylpropyl Derivatives, R	= H, $n = 2$
н	Н	H	$149 - 151^{d}$	$D^{i,l}$
н	Н	COCH ₃	$54-56^{b}$	\mathbf{D}^{i}
Н	Н	$\mathrm{COC}_{\delta}\mathrm{H}_{4}\mathrm{N}^{g}$	118-119°	D

Recrystallization solvent: ^a aqueous ethanol. ^b ethyl acetate-ligroin. ^c ethyl acetate. ⁱ Reported by Chessin *et al.*¹⁷ ⁱ Reported in Swiss Patent 309,771 (1955). ^k Reported in analysis (ionizable). ⁿ Bromine analysis. ^o Sulfur analysis, ⁿ P.o. mice ALD₅₀ mg./kg.

Table II α -Methylphenethyl Hydrazines

X	Ŷ	М.р. (b.р.), °С.	Method of prepn.	Empirical formula
H	H	$116 - 118^{d}$	\mathbb{B}^{h}	C9H14N2 HCl
Н	COCH3	75-77 ^b	С	$C_{11}H_{10}N_2O$
н	COOC ₂ H ₅	(130-131 (0.7 mm.))	D	$C_{12}H_{18}N_2O_2$
COOC ₂ H ₅	COOC ₂ H ₅	$93 - 95^{a}$	Ŀ,	$\mathrm{C}_{15}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{4}$
н	COOCH3	$47 - 50^{b}$	D	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{2}$

March 1962

(Continued)

Empirical formula	Carbo Calcd.	n, % Found	Hydro Calcd.	gen, % Found	Nitrog Calcd.	gen, % Found	Acute toxicity ^p	Reserpine- challenge test ^q
C9H14N2 · C2H2O4	54.99	54.85	6.71	6.95	11.66	11.79	230	5
$C_{11}H_{16}N_2O$	68.72	69.11	8.39	8.75	14.57	14.79	200	28
$C_{12}H_{18}N_2O_2$	64.84	64.65	8.16	8.32	12.60	12.91	575	15
C ₉ H ₁₈ ClN ₂ ·HCl	48.88	48.66	6.38	6.51	16.03	15.90^{m}	400	30
$C_{11}H_{16}N_2O_2$	63,44	63.46	7.74	7.80	13.45	13.63	>1000	>150
$C_{15}H_{18}N_2 \cdot HCl$	68.56	68.33	7.29	7.54	10.66	10.76	540	5
C ₈ H ₁₂ N ₂ ·HCl	55.65	55.96	7.59	7.82	20.55	20.48^{m}	125	10
C10H14N2O	67.38	67.38	7.92	7.87			180	20
$C_{15}H_{16}N_{2}O$	74.97	74.73	6.71	6.67	11.65	11.81	390	50
$C_{15}H_{17}N_{8}O$	70.56	70.49	6.71	6.89	16.46	16.62		
$C_{14}H_{15}N_{2}O\cdot 2HCl$	22.25^{m}	22.15			13.37	13.36	150	30
$C_{11}H_{18}N_2 \cdot HCI$	16.51^{m}	16.63					212	10
$C_{10}H_{14}N_2O_2$	61.83	61.96	7.26	7.27	14.42	12.58	125	10
$C_{11}H_{16}N_2O_2$	63.44	63.37	7.74	7.76	13.45	13.38	215	20
$C_{11}H_{16}N_2O_3$	58.91	58.99	7.19	7.19	12.49	12.35	460	20
$\mathrm{C}_{11}\mathrm{H}_{15}\mathrm{ClN}_{2}\mathrm{O}_{2}\cdot\mathrm{HCl}$	47.32	47.30	5.78	5.87	10.04	10.13	375	25
$C_9H_{14}N_2O \cdot H_2SO_4$	40.90	40.80	6.10	6.21	10.60	10.33	225	20
$C_8H_{11}CIN_2 \cdot H_2SO_4$	35.72	35.82	4.89	5.41	11.93	12.02^o	175	20
$C_{14}H_{16}N_2 \cdot HCl$	67.59	67.86	6.89	7.02	11.26	11.31	200	10
$C_9H_{14}H_2 \cdot H_2SO_4$	43.53	43.22	6.50	6.83	11.28	10.94	166	26
C11 H16N2O	68.72	68.75	8.39	8.60	14.57	14.35	345	>50
$\mathrm{C}_{15}\mathrm{H}_{17}\mathrm{NsO}$	70.56	70.68	6.71	7.03	16.46	16.44	600	55

^d isopropyl alcohol. ^e benzene. ^f Nicotinoyl. ^g Isonicotinoyl. ^h Reported by Biel et al.¹⁰ British Patent 864.108 (1961). ^l Reported in U. S. Patent 3,000,903 (1961). ^m Chlorine ^q 3 hr. Med mg./kg. i.p.

Footnotes same as in Table I.

Carbo	on, %	Hydro	gen, %	Nitrog	gen, %	Acute	Reserpine- challenge
Calcd.	Found	Calcd.	Found	Calcd.	Found	$toxicity^p$	$test^q$
57.90	57.7ô	8.10	8.34	15.01	14.89	85	5
68.72	68.77	8.39	8.59	14.57	14.86	75	30
64.84	64.45	8.16	8.15	12.60	12.38	180	10
61.20	61.40	7.53	7.51	9.52	9.57	1000	100
63.44	63.59	7.74	7.74	13.45	13.70	93	10

Method B.—Direct reaction of a carbonyl compound with excess hydrazine hydrate, isolation of the resulting hydrazone and catalytic reduction (using platinum oxide and palladium on charcoal) gave five compounds in 40-75% yield.

p-Methoxy-\alpha-methylbenzylhydrazine Monooxalate.—A solution of 75.1 g. (0.5 mole) of *p*-methoxyacetophenone in 200 ml. of 95% ethanol was added dropwise, with stirring, over 1 hr., to a refluxing solution of 100 g. (2.0 moles) of hydrazine hydrate in 100 ml. of 95% ethanol. The mixture was refluxed for 4 hr., cooled, filtered and dried to yield 64.3 g. (78%) of *p*-methoxy- α -methylbenzylidenehydrazine, as a yellow solid, m.p. 114–116°. The hydrazone was mixed with 0.5 g. of PtO₂, 2 g. of 5% Pd on charcoal and 300 ml. of absolute ethanol, and hydrogenated, with heating, in a Parr shaker until the calculated amount of hydrogen was absorbed (approx. 24 hr.). The mixture was filtered and the filtrate distilled to yield 38.2 g. of *p*-methoxy- α -methylbenzylhydrazine, as a colorless oil, b.p. 93–95° (0.09 mm.). The oxalate salt, m.p. 155–156°, was prepared in absolute ethanol and recrystallized from aqueous ethanol.

Method C.—Reaction of an alkyl carbazate (methyl, ethyl or *t*-butyl) with a carbonyl compound and catalytic reduction of the intermediate gave 21 substituted alkyl carbazates in 45-94% yield. Hydrolysis, with simultaneous decarboxylation, using ethanolic alkali (Claisen's method) yielded five monosubstituted hydrazines in 50-85% yield.

p-Butoxybenzylhydrazine Monooxalate.—A mixture of 25 g. (0.14 mole) of *p*-butoxybenzaldehyde, 14.6 g. (0.14 mole) of ethyl carbazate and 150 ml. of isopropyl alcohol was refluxed for 4 hr. The solvent was removed under vacuum and the residue recrystallized twice from ethyl acetate-petroleum ether to yield 36.4 g. (98%) of ethyl 3-(p-butoxybenzylidene)carbazate as colorless crystals, m.p. 111–112°.

A mixture of 200 ml. of isopropyl alcohol, 36 g. (0.136 mole) of ethyl 3-(*p*-butoxybenzylidene)carbazate and 0.5 g. of PtO_2 was hydrogenated, with heating, in a Parr shaker until the theoretical amount of hydrogen was absorbed (7 hr. initial pressure, 3.5 kg./cm.²). The mixture was filtered, the solvent removed under vacuum and the residue recrystallized from 50% aqueous methanol to yield 34.7 g. (96%) of ethyl 3-(*p*-butoxybenzyl)carbazate, as colorless crystals, m.p. 58-60°.

A mixture of 13.3 g. (0.05 mole) ethyl 3-(p-butoxybenzyl)carbazate, 5.7 g. (0.1 mole) of potassium hydroxide and 150 ml. of absolute ethanol was refluxed for 8 hr. The solvent was removed and the residue extracted with two 100-ml. portions of ether. The combined ether extract was filtered and a solution of 9 g. (0.1 mole) of anhydrous oxalic acid in ether added. The precipitate was recrystallized from aqueous methanol to yield 7.2 g. (51%) of p-butoxybenzyl-hydrazine monooxalate, as colorless crystals, m.p. 176-177°.

Method D.—Analogous to Method C using an acylhydrazine instead of an alkyl carbazate: nineteen compounds were prepared by the reduction of the intermediate hydrazones in 60-95% yield. Subsequent hydrolysis gave an additional seven substituted hydrazines in 30-65% yield.

p-Chloro- α **-methylbenzylhydrazine Hydrochloride.**—A mixture of 22.2 g. (0.3 mole) of acetylhydrazine, 46.4 g. (0.3 moles) of *p*-chloroneetophenone and 250

ml. of ethanol was refluxed for 8 hr. and cooled to yield 63.2 g. (77%) of 1-acetyl-2-(*p*-chloro- α -methylbenzylidene)hydrazine, as colorless crystals, m.p. 161-161.5°. Recrystallization from isopropyl alcohol raised the m.p. to 169°.

A mixture of 39 g. (0.185 mole) of 1-acetyl-2-(*p*-chloro- α -methylbenzylidene)hydrazine, 250 mg. of PtO₂ and 275 ml. of methanol was hydrogenated until the calculated amount of hydrogen was adsorbed (7 hr.; initial pressure, 3.5 kg./cm.²). The mixture was filtered, freed of solvent and the residue recrystallized several times from ethyl acetate-ligroin to yield 37 g. (94%) of 1-acetyl-2-(*p*-chloro- α methylbenzyl)hydrazine, as colorless crystals, m.p. 119–121°. A solution of 21.2 g. (0.1 mole) of this product in 75 ml. of 10% ethanolic potassium hydroxide was refluxed for 8 hr. The solvent was removed and the residue extracted with ether. The organic layer was distilled to yield 6.4 g. (38%) of *p*-chloro- α methylbenzylhydrazine, b.p. 90–95° (0.8 mm.). The base (4.0 g.) was dissolved in 250 ml. of dry ether and the solution saturated with dry hydrogen chloride. The salt was recrystallized from chloroform-petroleum ether to yield 3.2 g. of colorless crystals, m.p. 146–148°.

Method E.—Reaction of monoacetylated aralkyl hydrazines with excess acetic anhydride to yield diacetylated compounds. Three compounds prepared by this method are reported in Table I in 40-55% yields.

1,2-Diacetyl-2-*p*-*n*-butoxybenzylhydrazine.—A mixture of 17 g. (0.072 mole) of 1-acetyl-2-*p*-*n*-butoxybenzylhydrazine, 50 ml. of acetic anhydride and 1 drop of concd. sulfuric acid was heated for 0.5 hr. on a steam bath. After standing overnight, the acetic anhydride was removed under vacuum, the residue washed with water and recrystallized several times from ethyl acetate-petroleum ether to yield 8.4 g. (41.5%) of colorless, fluffy needles, m.p. 89–91°.

Method F.—Analogous to Method E, using an alkyl chloroformate in place of acetic anhydride with yields of 75-80%.

1-Carbethoxy-2-carbomethoxy-1-(α -methylbenzyl)hydrazine.—A mixture of 19.4 g. (0.1 mole) of methyl 3-(α -methylbenzyl)carbazate, 11.9 g. (0.11 mole) of ethyl chloroformate, 12.6 g. (0.15 mole) of sodium bicarbonate and 200 ml. of absolute ethanol was refluxed for 1 hr. and filtered hot. Removal of the solvent and distillation of the residue yielded 21.3 g. (80%) of colorless, viscous oil, b.p. 160–162° (0.7 mm.); n^{22} D 1.5091.

Method G.—Reaction of an aralkyl hydrazine with a cyclic carbonate (*i.e.*, ethylene carbonate) to yield an ω -hydroxyalkyl carbazate. Subsequent treatment with thionyl chloride yields the ω -chloroalkyl carbazate. This is essentially the method described by Delaby *et al.*²¹

 β -Chloroethyl 3-Phenethylcarbazate Hydrochloride.—A mixture of 44 g. (0.5 mole) of ethylene carbonate and 68 g. (0.5 mole) of phenethylhydrazine was heated on a steam bath for 1 hr. The reaction mixture was extracted with 500 ml. of boiling benzene. Cooling the benzene layer yielded 85 g. (64%) of β -hydroxyethyl 3-phenethylcarbazate as colorless crystals, m.p. 90°. Recrystallization from benzene and drying for analysis raised the m.p. to 98–99°.

A mixture of 58 g. (0.26 mole) of β -hydroxyethyl 3-phenethylcarbazate, 40 g. (0.33 mole) of thionyl chloride and 1000 ml. of benzene was allowed to stand for

(21) R. Delaby, R. Damiens, and M. L. Capmau, Compt. rend., 246, 3353 (1958).

24 hr. The benzene and excess thionyl chloride were removed and the residue (33 g.) was recrystallized several times from ethyl acctate-petroleum ether to yield 21 g. (29%) of β -chloroethyl 3-phenethylearbazate hydrochloride, m.p. 163.5-164°.

Structure-Activity Relationships.—The compounds reported in this paper were put through our general screening program, with results that were interesting and in some cases surprising. In general, comparing monosubstituted hydrazines with their acyl derivatives, the monosubstituted hydrazines were found to be the most active and the most toxic. The carbazates were slightly less active and less toxic. The acetyl derivatives were the least active and least toxic. However, acute toxicity and activity were not directly related from one homologous series to the next. For example, p-phenoxy- α -methylbenzylhydrazine is one of the most active and least toxic of the compounds.

The relative activity of the acetylated and carboalkoxylated aralkyl hydrazines apparently is dependent upon the relative rates of hydrolysis of these blocking groups, yielding the free aralkyl hydrazines. Observations in the course of preparing the free hydrazines from the acylated compounds suggest that the *in vivo* activity of the compound is proportional to the rate of chemical hydrolysis of the blocking group. In addition, studies with ethyl $3-(\alpha-\text{methylbenzyl})$ -carbazate show that although it is among the more potent inhibitors *in vivo* (reserpine challenge and elevation of brain serotonin), it is only a weak inhibitor of MAO *in vitro*.

Compounds containing bulky *para* substituents (such as butoxy, phenyl, phenoxy, etc.) appear to be the most potent and least toxic on the basis of this preliminary work.